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Abstract 

A simple model for the Debye-Waller factor is pro- 
posed which is based on the familiar high- and low- 
temperature expansions and allows one to determine 
this quantity at an arbitrary temperature with a typical 
accuracy of 2 to 3%. The coefficients in the model 
are determined from phonon density-of-states curves 
obtained from neutron inelastic-scattering measure- 
ments and are tabulated for 43 elements with the 
f.c.c., b.c.c., h.c.p, and diamond structures. 

Introduction 

The Debye-Waller factor, which describes the effect 
of the lattice vibrations on Bragg-peak intensities, is 
not accurately known - even for the commonest crys- 
tals - in spite of the fact that its importance in crystal- 
structure determinations has been appreciated since 
the beginning of X-ray crystallography. For example, 
in a recent compilation by Butt, Bashir, Willis & 
Heger (1988) of the best measured values of the 
Debye-Waller factor of 22 cubic elements at room 
temperature, the average estimated error is 7%, with 
many exceeding 10%. The reason is that other effects, 
most notably absorption, extinction and thermal 
diffuse scattering, also affect the measured Bragg- 
peak intensities and are often difficult to make 
adequate corrections for. On the other hand, an accur- 
ate ab initio calculation of the Debye-Waller factor 
is difficult, even when the force constants are known, 
because anharmonic effects must be taken properly 
into account. 

There are many situations in which an approximate 
estimate of the Debye-Waller factor of a crystal is 
required. For example, initial estimates of the Debye- 
Waller factor are useful in crystal-structure determi- 
nations by X-ray or neutron diffraction. An approxi- 
mate knowledge of the Debye-Waller factor is also 
required in planning neutron inelastic-scattering 
experiments or for a preliminary calibration in 
diffraction thermometry. For applications such as 
these, one normally uses the familiar Debye model. 
However, this model does not provide a good rep- 
resentation of the Debye-Waller factor over a wide 
range of temperatures; if the Debye temperature has 
been chosen to give a good fit at low temperatures 
then the model fails badly at high temperatures and 
vice versa. 

During the past 30 years, accurate phonon densities 
of states have been determined for many crystals by 
neutron inelastic-scattering measurements. Within 
the quasi-harmonic approximation, these results 
allow one to obtain a much more reliable estimate of 
the Debye-Waller factor than is possible using the 
Debye model. The purpose of the present paper is to 
summarize these data in a form that will allow one 
to determine the Debye-Waller factor at an arbitrary 
temperature without the need for a lengthy numerical 
calculation. 

In particular, we have devised a simple analytical 
model for the Debye-Waller factor which is based 
on the familiar high- and low-temperature expansions 
of this quantity. To the extent that the lattice vibra- 
tions are harmonic (or quasi-harmonic), the accuracy 
of the model is limited by the available data for the 
phonon density of states, which are used to determine 
the coefficients in the model, and is about 2 to 3%. 
These coefficients are tabulated for 43 elements with 
the f.c.c., b.c.c., h.c.p, and diamond structures. 

The Debye-Waller factor 

The Debye-Waller factor is denoted by exp ( -2  W) 
and the exponent is in general of the form 2 W = (qu) 2, 
where q is the wave-vector transfer and u the root- 
mean-square displacement of an atom perpendicular 
to the Bragg planes. Since q = (47r/A)sin 0, where A 
is the wavelength and 0 the Bragg angle, the exponent 
can be expressed alternatively as 

2 W = 2 B [ ( s i n  O)/A] 2, (1) 

in which B = 8 7 r 2 u  2. In the harmonic (or quasi- 
harmonic) approximation, the exponent is given, 
alternatively, by the expression (e.g. Lovesey, 1984) 

cc. 

2 W =  tot ~ coth(hto/2kT)[g(to)/to]dto. (2) 
o 

Here, htor = (hq)2/2m is the recoil energy, in which 
m is the atomic mass, T is the temperature and g(to) 
the phonon density of states which is normalized such 
that 

oo 

g(to) dto = 1. (3) 
0 

Strictly speaking, the quantity g(to) in (2) depends 
not only on the phonon frequencies but also on the 
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phonon polarization vectors and on the orientation 
of the reflecting planes relative to the crystallographic 
axes. It is only in the case of a cubic crystal with one 
atom per primitive unit cell (i.e. a f.c.c, or b.c.c. 
structure) that g(tO) dtO is simply the fraction of nor- 
mal modes with frequency in dtO. Nevertheless, the 
interpretation of g(tO) as the phonon density of states 
may also be valid to an adequate approximation for 
crystals with the diamond structure, where the 
Debye-Waller  factor is isotropic, or the ideal h.c.p. 
structure, where it is almost isotropic. 

Reduced variables 

It is convenient to introduce the dimensionless quan- 
tities 

x=to/tom, y= T/Tm, (4) 

where tOm,, is the maximum phonon frequency and 
k Tm = htOm. Then 

2 W= (tOr/tOm)J(y), (5) 

in which 
! 

J(y) = ]" coth (x/2y)[f(x) /x]  dx. (6) 
o 

Here, f ( x )=  to,,,g(to) is the reduced phonon density 
of states and 

1 

Sf(x) dx= 1. (7) 
o 

The quantity B in (1) is then given by 

B = (417" 2 h~ mto,,,)J(y). (8) 

Fig. 1 shows f (x)  for copper at room temperature 
obtained from the phonon density of states deter- 
mined by Svensson, Brockhouse & Rowe (1967) from 
neutron inelastic-scattering measurements. The corre- 
sponding J(y) is illustrated in Fig. 2. These figures 

also show the results for the conventional Debye 
model (James, 1965), where T,, is the Debye tem- 
perature and 

f(x)=(30 x2 0-<x-<ll<x<oo. (9) 

Expansions and model 

Expanding the coth term in (6), one obtains the 
following series expansion of J ( y )  in inverse powers 
of y" 

J (y )=2f_2y+l /6y - f2 /360y3+. . . ,  (10) 

in which 
1 

f ,=~x" f (x )  dx. (11)  
o 

In (10) we have used the fact that fo = 1. For the 
Debye model, where f ,=3 / (n+3) ,  the result 
obtained by truncating the above series expansion 
after the third term is shown by the dotted curve in 
Fig. 3 and compared with the exact result, which is 
represented by the solid curve. 

For any three-dimensional crystal with short-range 
interatomic forces, 

f ( x ) ~ a x  2 a s x ~ 0 .  (12) 

For example, a = 3 for the Debye model (9). It then 
follows that J(y) has the asymptotic behavior 

J(Y) ' f - l+(~r2/3)aY 2 as y-~0. (13) 

This result is illustrated for the Debye model by the 
dashed curve in Fig. 3. 

None of the above results are essentially new. In 
particular, expansions equivalent to (10) and (13) 
have been known for many years (e.g. Barron, 
Leadbetter, Morrison & Salter, 1966). What is not 
widely appreciated, however, is the fact that the 
regions of applicability of these expansions overlap 
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Fig. I. Reduced phonon density of  states for Cu at room tem- 
perature (Svensson e t  al . ,  1967) and for the Debye model. 
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Fig. 2. Integral J(y) calculated from (6) for Cu and the Debye 

model from the reduced phonon density-of-states curves shown 
in Fig. 1. 
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in the neighborhood of y = 0.2 so that the model 

[f_, +(Tr2/3)ay 2 
J(Y)=[2f_2y+ 1/6y-f2/360y 3 

y < 0 . 2  
(14) 

y->0.2 

provides a good approximation to J ( y )  for all y. The 
validity of this statement for the Debye model is 
evident from Fig. 3. In the next section we show that 
it is true quite generally. 

Analysis 

We have calculated J(y) by a numerical integration 
of (6), together with the coefficients in the approxi- 
mate model (14), for all the elements in the Periodic 
Table with the f.c.c., b.c.c., h.c.p, or diamond structure 
for which published values of the phonon density of 
states, and hence f(x),  are available. In almost all 
cases, the phonon density of states had been construc- 
ted from the interatomic force constants obtained 
from phonon dispersion curves measured by coherent 
neutron inelastic scattering. The only exceptions are 
vanadium, for which f (x)  was obtained directly from 
incoherent neutron inelastic-scattering measure- 
ments, and xenon, for which f (x)  was obtained from 
a published theoretical calculation. Most of the data 
were taken at room temperature; the exceptions 
include cryogenic crystals (like Ne) and high- 
temperature phases (like f.c.c. Fe). The results are 
summarized in Table 1, together with the references 
for the f (x)  data. We also list the coefficients for the 
Debye model. 

The phonon density of states of Cu at room tem- 
perature has been measured very precisely by two 
different groups - Svensson et al. (1967) and Nicklow, 
Gilat, Smith, Raubenheimer & Wilkinson (1967) - 
and the corresponding f ,  values differ by 1 to 2%. 
The discrepancies between the values of f ,  obtained 
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Fig. 3. Integral J(y) for the Debye model. The solid curve shows 
the exact result calculated from (6), the dotted curve the first 
three terms in the series expansion (10) and the dashed curve 
the asymptotic expansion (13). 

by these authors and the values we have calculated 
from their published phonon density-of-states curves 
are typically 0.1 to 0-3%. Thus, it appears that the 
accuracy of the results in Table 1 is mostly limited 
by the original data and not by the accuracy with 
which we were able to extract the f ,  values from the 
published results. 

We have investigated the rate of convergence of 
the expansions (10) and (13) for all 46 elements and 
structures in Table 1. We find that if (10) is truncated 
beyond the third term, then the error is, on average, 
less than 0-2% if y>-0.3, while the error in (13) is 
generally less than 0.4% if y <-0.1. When y = 0-2 the 
error in both (10) and (13) is typically 2%. Thus, the 
maximum error in the model expression (14) is 
evidently no worse than the accuracy of the available 
data for the coefficients themselves. 

The boundary, y = 0 . 2 ,  in (14) is somewhat 
arbitrary and certainly not optimal. For example, it 
is evident from Fig. 3 that the value y = 0.24 would 
be a better choice for the Debye model. However, for 
the elements we have studied, y = 0.2 is a good overall 
compromise. One could, of course, treat the boundary 
as an additional parameter in the model, but there is 
little point in doing this. If the exact position of the 
boundary becomes an important consideration, one 
probably should not be using this kind of model in 
the first place. 

The quantity B, as expressed by (8), is given in 
units of ~2 by 

B=(39.904/Mum)J(y), (15) 

where M = NAm is the atomic weight in g mol-~ (NA 
being Avogadro's number) and u,~ = wm/27r is the 
maximum phonon frequency in THz. With um in THz, 
T,, is given in units of K by Tm = 47.993 urn. Table 2 
shows a comparison of values of B at T=293  K 
calculated from (14) and (15) with the corresponding 
experimental values compiled by Butt et al. (1988). 
The experimental values were obtained directly from 
diffraction measurements and have an estimated 
average error of 7%. The error in the calculated values 
is assumed to be 3%. The difference between the 
calculated and experimental values in Table 2 is, in 
most cases, less than twice the standard error of the 
difference. 

Concluding remarks 

Equations (14) and (15), together with the coefficients 
listed in Table 1, enable one to quickly estimate the 
Debye-Waller factor at an arbitrary temperature for 
any of the elements and structures in the table. The 
accuracy of the model is presently limited to at best 
2 to 3% by the available data for the phonon density 
of states which were used to determine the 
coefficients. 
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Table  1. Coefficients for the model Debye- Waller factor 

M z,,, T~ 

Element Z (g m o l - ' )  S t r u c t u r e  ( T H z )  ( K )  a f -2  f - ,  f2 Reference 

He 2 4.0026 H.c.p. 1-74 83.5 18.476 I 1.285 2.837 0-219 (a)  
F.c.c. 4.00 192 5.318 4.595 1 "853 0.435 (b) 

Li 3 6.941 B.c.c. 9.07 435 8.677 5'552 1.909 0.492 (c) 
Be 4 9.0122 H.c.p. 20.29 974 2.225 3" 139 1.611 0.479 (d)  
C 6 12.011 Diamond 40.09 1924 2.352 3.114 1.552 0.576 (e) 
Ne 10 20.179 F.c.c. 1.69 81-1 3.184 3.569 1-676 0.479 ( f )  
Na 11 22.990 B.c.c. 3.84 184 5.386 4.558 1.800 0.494 (g) 
Mg 12 24-305 H.c.p. 6.49 311 3.557 3.723 1.702 0.475 (d)  
A1 13 26.982 F.c.c. 9.75 468 3.670 4.029 1.778 0.445 ( h ) 
Si 14 28-086 Diamond 15.85 761 6.933 6.943 2.136 0.497 (e) 
Ar 18 39.948 F.c.c. 2.03 97.4 3-300 3.603 1.675 0-490 (i) 
K 19 39.098 B.c.c. 2"38 114 5"251 4.818 1 "859 0.474 ( j )  

Ca 20 40.078 F.c.c. 4.71 226 3-914 3.568 1.625 0.539 (k) 
B.c.c. 4.97 239 7.917 5.220 1.885 0.470 (I) 

Sc 21 44.956 H.c.p. 7.22 347 3.054 3.511 1.651 0.506 ( m ) 
Ti 22 47.88 H.c.p. 8.74 419 2-766 3"772 1.743 0.453 (n) 
V 23 50.942 B.c.c. 8" I 0 389 5.424 3"845 1.655 0.506 (o) 

Cr 24 51.996 B.c.c. 9.71 466 1.502 2"443 1-428 0.594 (p)  
Fe 26 55.847 B.c.c. 9.54 458 3.079 3.310 1.602 0.522 (q) 

F.c.c. 7.43 357 3"585 3'453 1.608 0.543 (r) 
Ni 28 58"69 F.c.c. 8"97 430 2.639 3-364 1"642 0.491 (s) 
Cu 29 63' 546 F.c.c. 7"29 350 3-681 3'737 1 '699 0-479 (t) 
Zn 30 65"39 H.c.p. 6"29 302 4.060 5"991 2.147 0"381 (d)  
Ge 32 72.59 Diamond 9.20 442 4.518 7.495 2.245 0.476 (e) 
Kr 36 83.80 F.c.c. 1.50 72-0 3.743 3-673 1.685 0.485 (u) 
Rb 37 85.468 B.c.c. 1.51 72.5 7.054 5"304 1.911 0.468 (v) 
Sr 38 87.62 B.c.c. 2-69 129 6.581 4.877 1.833 0.495 (w) 
Y 39 88-906 H.c.p. 4.76 228 2.394 3-454 1-661 0.503 (x) 
Zr 40 91.224 H.c.p. 6.29 302 3.485 4.136 1 "803 0.440 (y)  
Nb 41 92.906 B.c.c. 6"50 312 3.668 3"544 1.637 0.511 (z) 
Mo 42 95.94 B.c.c. 7"96 382 1.841 2"607 1.461 0.578 (aa) 
Pd 46 106-42 F.c.c. 6"88 330 5.556 4.526 1.828 0.439 (bb) 
Ag 47 107.87 F.c.c. 5"09 244 4.488 4.131 1-769 0.458 (cc) 
S n 50 118" 71 Diamond 6- 07 29 i 5.199 10.087 2.480 0.499 ( dd ) 
Xe 54 131.29 F.c.c. 1"32 63.4 4.618 4"136 1.771 0"450 (ee) 
Cs 55 132.91 B.c.c. 1.09 52.3 8-845 5"835 1.980 0-446 ( i f )  
Ba 56 137-33 B.c.c. 2.28 109 4.653 4.429 1 "809 0.471 (gg) 
La 57 138.91 F.c.c. 2.57 123 2.833 3.427 1.635 0.520 ( hh ) 
Tb 65 158.93 H.c.p. 3.28 157 3.043 3.470 1-647 0.502 (ii) 
Ho 67 164.93 H.c.p. 3.44 165 2-244 3.291 1.637 0.492 ( j j )  
Ta 73 180' 95 B.c.c. 5.12 246 2.324 3-061 I" 573 0.514 (kk) 
W 74 183"85 B.c.c. 6-74 323 i -872 2.652 1.483 0.551 (II) 
Pt 78 195.08 F.c.c. 5.15 247 4-227 3.874 1.705 0.490 (ram) 

Au 79 196-97 F.c.c. 4.69 225 7.453 5.439 1.982 0-405 (cc) 
Pb 82 207.2 F.c.c. 2- 22 107 4.357 4.439 1" 836 0.456 (nn) 
Th 90 232.04 F.c.c. 3.51 168 3-641 4.205 ,1.816 0.439 (oo) 

Debye 3-000 3.000 1"500 0.600 

References: (a)  Reese, Sinha, Brun & Tilford (1971); (b) Eckert, Thomlinson & Shirane (1977); (c) Smith, Dolling, Nicklow, Vijayaraghavan & Wilkinson 
(1968); ( d )  Young & Koppei (1964); (e) Dolling & Cowley (1966); ( f )  Skalyo, Minkiewicz, Shirane & Daniels (1972); (g) Gilat  & Dolling (1964); (h) 
Gilat  & Nicklow (1966); (i) Fujii, Lurie, Pynn & Shirane (1974); ( j )  Cowley, Woods & Dolling (1966); (k) Stassis, Zarestky, Misemer, Skriver, Harmon 
& Nicklow (1983); (l) Heiroth, Buchenau, Schober & Evers (1986); (m) Wakabayashi,  Sinha & Spedding (1971); (n) Stassis, Arch, Harmon & Wakabayashi  
(1979); (o) Page (1967); (p)  Shaw & Muhlestein (1971); (q) Minkiewicz, Shirane & Nathans (1967); (r) Zaretsky & Stassis (1987); (s) Birgeneau, Cordes, 
Dolling & Woods (1964); (t) Svensson, Brockhouse & Rowe (1967); (u) Skalyo, Endoh & Shirane (1974); (v) Copley & Brockhouse (1973); (w) 
Mizuki & Stassis (1985); (x) Sinha, Brun, Muhlestein & Sakurai (1970); (y)  Stassis, Zarestky, Arch, McMasters & Harmon (1978); (z) Sharp (1969); (aa) 
Powell, Martel & Woods (1977); (bb) Miiller & Brockhouse (1971); (cc) Lynn, Smith & Nicklow (1973); (dd)Pr ice  & Rowe (1969); (ee) Gupta  & Gupta  
(1969); ( i f )  Niicker & Buchenau (1985); (gg) Mizuki, Chen, Ho & Stassis (1985); (hh) Stassis, Loong & Zarestky (1982); (ii) Houmann & Nicklow (1970); 
( j j)  Nicklow, Wakabayashi & Vijayaraghavan (1971); (kk) Woods (1964); (ll) Higuera, Brotzen, Smith & Wakabayashi (1985); (ram) Ohrlich & Drexel 
(1968); (nn) Stedman, Almqvist & Nilsson (1967); (oo) Reese, Sinha & Peterson (1973). 

The accuracy is also limited by the assumption that 
anharmonic effects are negligible. The formal theory 
of the effect ofanharmonic interactions on the Debye- 
Waller factor has been developed by a number of 
authors (e.g. Maradudin & Flinn, 1963; Cowley, 1963; 
Kashiwase, 1965; Wolfe & Goodman, 1969; Willis, 
1969). In the harmonic approximation at high tem- 
perature 2 W is proportional to q2T, while the leading 
anharmonic correction is found to be proportional to 
q2T2, so that anharmonic effects can be expected to 

become important at sufficiently high temperature. 
There is also a term proportional to q4T3, but this 
term is almost always negligible. In practice, the infor- 
mation necessary to implement the theory for any 
particular crystal is often not available but, when it 
is, large-scale computer calculations are required. 

One effect of the anharmonic interactions is thermal 
expansion, which produces a change in the effective 
force constants, and hence in the phonon frequencies, 
so that g(to) becomes temperature dependent. This 
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Table 2. Comparison of values of B at T = 293 K calcu- 
lated from (14) and (15) with the corresponding experi- 
mental values compiled by Butt et al. (1988); B is in 

units of ~ 2 

Element Structure B (calc.) B (exp.) 

Li B.c.c. 4.9 ( 1 ) 4.1 (6) 
Na B.c.c. 6.6 (2) 7-9 (2) 
AI F.c.c. 0.81 (2) 0.86 (I) 
Si Diamond 0.52 (2) 0.45 ( 1 ) 
K B.c.c. 10.7 (3) 12 (2) 
V B.c.c. 0.58 (2) 0-55 (3) 
Cr B.c.c. 0.263 (8) 0-26 ( I ) 
Fe B.c.c. 0.34 (I) 0.35 (1) 
Ni F.c.c. 0.34 (1) 0.37 ( I ) 
Cu F.c.c. 0.56 (2) 0-57 ( ! ) 
Ge Diamond 0.61 (2) 0.57 (1) 
Nb B.c.c. 0.45 (I) 0.49 (2) 
Mo B.c.c. 0.220 (7) 0.25 (2) 
Pd F.c.c. 0-45 (1) 0-45 (6) 
Ag F.c.c. 0.73 (2) 0-79 (2) 
Ta B.c.c. 0.32 (I) 0.32 (I) 
W B.c.c. 0.161 (5) 0-18 (I) 
Pt F.c.c. 0.37 (I) 0.32 (2) 
Au F.c.c. 0-62 (2) 0.57 (4) 
Pb F.c.c. 2.11 (6) 2-42 (7) 

effect contributes to part of the q2 T 2 term mentioned 
above and can be seen in the work of Nicklow et al. 
(1967) who determined the phonon density of states 
for copper at 49 and 298 K. We find from their results 
that f-2 changes by almost 3% over this temperature 
range while f - i  and f2 change by about 1%. This 
suggests that the error in the present model may be 
more like 3 to 5% when it is applied at a temperature 
much different from the one at which g(to) was 
measured. 

In metals, the anharmonic contribution to the 
Debye-Waller factor remains at the few-percent level 
until the temperature exceeds about half the melting 
point (e.g. Pathak & Shah, 1979). Near the melting 
point the measured anharmonic shift in B is typically 
25% but, even here, the present model may continue 
to be useful if a rough estimate of the Debye-Waller 
factor is all that is needed. 

Finally, it is unlikely that the discrepancies between 
the directly measured values of B in Table 2 and 
those calculated from the present model are primarily 
due to anharmonic effects because the discrepancies 
appear to be largely random in both magnitude and 
sign. Furthermore, one would not expect anharmonic 
effects to be large here because, in most cases, g(to) 
and the measured values of B were both determined 
from room-temperature experiments and this tem- 
perature is well below the melting point of most of 
the elements in Table 2. One notable exception is Na, 
for which g(to) was determined at 90 K while the 
temperature, 293 K, at which B was measured is very 
near the melting point, 371 K. In this case, the large 
20% discrepancy may well arise mainly from anhar- 
monic effects. 
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Abstrac t  

The absorption of X-rays scattered by isotropic random 
multiphase materials is shown theoretically to depend not 
only on volume fraction, linear absorption coefficient and 
mean particle size of each phase but also on the shape of 
the scattering particles. The absorption effect is remarkably 
enhanced with increasing polydispersity and irregularity of 
the scattering phase. 

In the present note we consider the absorption of X-rays 
in heterogeneous materials and its dependence on the shape 
of the scattering particles. The specimen is supposed to be 
planar and to consist of n crystalline phases. The particles 
of each phase i ( i = l , . . . , n )  should be randomly dis- 
tributed. The intensity I, of the X-ray beam scattered by 
phase i is mainly determined by the volume fraction c, of 
the scattering particles. However, interaction processes such 
as the generation of photoelectrons by the X-rays attenuate 
the intensity of the beam. In a homogeneous single-phase 
material, this attenuation is described by the linear absorp- 
tion coefficient/x~ of the corresponding phase. The situation 
is more complicated in heterogeneous materials. In general, 
the beam penetrates not only the scattering phase i but also 
regions filled with particles of the other phases. If all parti- 
cles are very small compared with the penetration depth of 
the X-rays, the beam will pass through many regions of all 
phases. Then the path length through particles of the scatter- 
ing phase is given by the geometrical path length of the 
beam in the whole sample multiplied by the volume fraction 

of the scattering particles. Considering a series of samples 
of the same composition but with increasing particle size, 
the length of the path of the beam through the scattering 
phase exceeds the above-mentioned value more and more, 
and in the limit of very large particles the whole path of 
the beam through the sample is within a single scattering 
particle at the surface of the sample. With the supposition 
that the linear absorption coefficients /z~, i = 1 , . . . ,  n, are 
different, it is obvious that the strength of the absorption 
effect varies with the size of scattering particles (Brindley, 
1945; Suortti, 1972). The present calculation will show that 
the absorption effect depends also on the shape of scattering 
particles. 

The intensity I~ of a symmetrically diffracted beam is 

I,/Io., = j" exp [-/x,x,-/x(,)x(,)] dV/Qo.  (1) 
v 

The scattering phase is denoted by i, x~ is the path length 
of a ray through particles of phase i and x(~) is the path 
length through the regions of the (planar) sample that do 
not belong to phase i./z~ is the linear absorption coefficient 
of phase i and 

/x(i) = ( l  - c,) -I  ~, cjtxj (2) 

describes the mean value of the absorption coefficient for 
all regions of the sample outside phase i. lo, i/2tz~ is the 
intensity of an / - type  single-phase reference specimen (c~ = 
1) obtained under the same experimental conditions as the 
scattering intensity I~ of the multiphase sample (external 
standard method). Q0 is the cross-section area of the 
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